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Olfactory signaling is a crucial component in the life history of

insects. The development of precise and parallel mechanisms

to analyze the tremendous amount of chemical information

from the environment and other sources has been essential to

their evolutionary success. Considerable progress has been

made in the study of insect olfaction fueled by bioinformatics-

based utilization of genomics along with rapid advances in

functional analyses. Here we review recent progress in our

rapidly emerging understanding of insect peripheral sensory

reception and signal transduction. These studies reveal that the

nearly unlimited chemical space insects encounter is covered

by distinct chemosensory receptor repertoires that are

generally derived by species-specific, rapid gene gain and loss,

reflecting the evolutionary consequences of adaptation to meet

their specific biological needs. While diverse molecular

mechanisms have been put forth, often in the context of

controversial models, the characterization of the ubiquitous,

highly conserved and insect-specific Orco odorant receptor

co-receptor has opened the door to the design and

development of novel insect control methods to target

agricultural pests, disease vectors and even nuisance insects.
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Introduction
Chemosensation plays an essential role throughout the

life cycles of insects that respond to a diverse array of

biological and environmental chemical signals/cues to

locate and select food, mates, oviposition sites and avoid

predators. For insects, the precise discrimination and

interpretation of what is an essentially unlimited spec-

trum of chemical information impacts numerous beha-

vioral decisions that directly contribute to their success

and in many cases, survival. To interpret these signals
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insects utilize a range of molecular components that

center around several large families of chemosensory

receptors which are housed in a diverse array of hair-like

structures called sensilla that are non-randomly distrib-

uted across peripheral appendages such as the antennae,

maxillary palps, or labials (reviewed in [1]). The number

and type of sensilla present on chemosensory appendages

vary according to species as well as their developmental

stage (e.g., larvae vs. adults), and gender. While it remains

unclear how sensilla-specific ultrastructure contributes to

the functionality of each sensilla type, the high degree of

diversity may reflect significant evolutionary con-

sequences for high sensitivity in odor trapping and phy-

logenetic and/or developmental constraints evolved with

physical environment [2]. Odorants are thought to diffuse

through numerous pores located on the sensilla surface

after which they enter an aqueous lymph that must be

traversed in order to reach the spectrum of molecular

receptors present on the dendrites of olfactory receptor

neurons (ORNs) [3]. Activation of a diverse set of che-

mosensory receptors by odorants provides a range of both

excitatory and inhibitory inputs for the generation of

ORN action potentials that are further processed across

several layers of downstream neural pathways. At the

same time, the timely termination and desensitization

of peripheral signaling is required to promote sensitivity

and selectivity of ORN-based signaling although the

precise elucidation of the underlying mechanisms respon-

sible for this essential component is still undefined. Here,

we summarize recent advances derived from the study of

model and non-model systems as well as our current

understanding of how insects detect odors with a focus

on sensory reception and signal transduction, and discuss

evolutionary considerations regarding the development of

diverse modalities of insect olfactory reception.

Odorant binding proteins and odorant degrading

proteins

Because odorants are typically hydrophobic they require

solubilization to traverse the sensillum lymph. This role is

presumed to be carried out by a suite of odorant binding

proteins (OBPs [4]) (Figure 1). OBPs are globular, water-

soluble proteins (14–20 kDa) that contain six a-helical

domains. In mosquitoes, classic OBPs are conserved with

6 cysteine residues and multiple cysteine variants are

reported as PlusC (12 cysteines), MinusC (4 cysteines)

and atypical (elongated C-terminus) [5]. The total num-

ber of OBPs for Anopheles gambiae, Aedes aegypti and Culex
quinquefasciatus are now reported as 69, 111, and 109,

respectively [6]. OBPs are typically the most highly

expressed genes in peripheral olfactory tissues and

accordingly are well studied in a wide range of insects
www.sciencedirect.com
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Figure 1
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(A) Insect chemosensory organs and molecular models in signal transduction. Insect chemosensory appendages such as the antennae, maxillary

palps and labials are covered by sensilla. (B) An olfactory sensillum housing support cells and an ORN (blue); odorants encounter the ORN

dendrite across sensillum lymph after penetration via cuticular pores. (C) Distinct classes of odorants activate specific groups of chemoreceptors

and other components with diverse mechanistic models: Drosophila may use the bound OBP to activate the receptors. Moth pheromone-binding

proteins (PBPs) eject their odorant load through a pH-induced conformational change including the formation of an a-helix that occupies the

binding pocket. Mosquito odorant-binding proteins (OBPs) also eject their ligands through a pH-induced conformation change including the

formation of a ‘lid’.
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(as reviewed in [7]). OBPs use several mechanisms to

release odorants and activate ORs. OBPs have been

hypothesized to use several, not necessarily consistent,

mechanisms to release odorants and activate ORs. In

Drosophila for example, it has been suggested that

OR67d (present in T1 neurons) is activated by the OBP

LUSH, bound to cis-vaccenyl acetate (cVA) sex pheromone

[8,74], although a recent study contradicts this model to

show that cVA directly activates OR67d [9��]. Moth PBPs

[10] and mosquito OBPs [11] eject odorants through pH-

dependent conformational changes at close proximity to the

membrane. In addition to OBPs, a range of odorant degrad-

ing enzymes (ODEs) play an important role in the termin-

ation of odor-based signal transduction [12,13]. In particular,

several esterases and cytochrome P450s act as ODEs and

pheromone degrading enzymes (PDEs) and are abundant in

sensilla lymph where they rapidly degrade odorants and

pheromones [14–17].

ORN chemosensory receptors
Odorant receptors (ORs)

After intensive effort, a large family of over 60 ORs was

first identified and characterized in D. melanogaster by the

laboratory of John Carlson using novel bioinformatics-

based methods [18]. Subsequent studies confirmed OR

localization on the dendritic membrane of Drosophila
ORNs as well as unexpectedly revealing an inverted

topology where the N terminus is intracellular relative

to mammalian ORs [19]. This departure from mammalian

OR paradigms was further strengthened as it became

clear that insects ORs act as ligand-gated ion channels

[20,21]. Insect OR ion channels are composed of hetero-

meric complexes of as yet unknown stoichiometry of two

subunits, one of which is highly conserved and found in all

OR complexes and the other being highly divergent and

variable [22–26]. In light of its highly conserved sequence

and constitutive presence within OR complexes, the first

of these subunits is now known as the OR co-receptor

(Orco; [27]). The other OR subunit(s) are highly divergent

both in terms of number and primary amino acid sequence

across insect taxa and are often termed tuning ORs reflect-

ing the hypothesis they are responsible for recognizing

odorant ligands. Consistent with mammalian paradigms,

typically only one tuning OR/Orco complex is expressed in

each ORN although co-expression of two tuning Or genes

have been occasionally observed together with Orco [28].

Two models have been put forth for the molecular mech-

anisms responsible for insect OR-based signal transduction.

In the first model, OR/Orco complexes form odorant-

activated ionotropic cation channels [20]. In the second,

Orco itself is the ionotropic cation channel that is activated

by fast, odor-dependent pathways as well as being affected

by a slow, metabotropic mechanism involving G-proteins

and adenylyl cyclases [21]. In addition to mechanistic

considerations, the comprehensive functional study of het-

erologously expressed OR/Orco complexes have revealed
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the response profiles of individual tuning ORs to biologi-

cally relevant insect odorants. Comprehensive ‘deorphani-

zation’ studies have been carried out in both D. melanogaster
[29–31] and An. gambiae [32–35] in which panels of bio-

logically relevant odors were tested against OR/Orco com-

plexes using the ‘empty neuron’ paradigm established in

Drosophila or adopting well-established systems such as

Xenopus oocytes in a two electrode voltage clamp approach.

In addition a large number of other insect OR complexes

have been similarly deorphanized [36–39]. The distinctive

shift in odor space covered by D. melanogaster focusing on

esters compared to that of An. gambiae focusing more on

aromatics (Figure 2) represents an example of the species-

specific evolution of OR repertoires specialized for detect-

ing and discriminating odors that convey ecologically

relevant information utilized for oviposition, nutrient local-

ization and, in the case of An. gambiae, vertebrate host

seeking for blood meals [35].

Taken together these studies reveal a general principle of

insect odor coding that is consistent with mammalian

models [40] whereby combinatorial signal transduction

by multiple tuning ORs respond to a wide range of

chemicals. Specifically, individual odorants can activate

specific groups of receptors while individual receptors

also can respond to overlapping groups of odorants. Some

receptors broadly respond to a large number of odorants to

act as ‘generalists’ while ‘specialist’ ORs respond to

unitary or small sets of odorants [41]; in this paradigm

ORs specially tuned to pheromones would be considered

‘ultra-specialists’ that also reflect their novel interaction

with other membrane components including the sensory

neuron membrane protein SNMP and PBP accessory

proteins. SNMPs are related to the CD36 family of

receptors that are highly conserved in multiple insect

families particularly in holometabolous species [42]. Two

subfamilies (SNMP1 and SNMP2) were found in dipter-

ans and lepidopterans [43], respectively. SNMPs have

been suggested to play an essential role in mediating the

interactions between pheromone ligands and ORs in D.
melanogaster [44], although their functional mechanisms

and precise role in general signal transduction remains to

be determined (Figure 1).

Although in vivo Orco is believed to act exclusively as a

co-receptor that is not directly involved in odorant bind-

ing/recognition, recent high-throughput screens have

identified a novel class of small molecules that act as

Orco agonists and antagonists [45–47]. In light of Orco’s

wide conservation and ubiquitous expression across insect

taxa [22–25], the discovery of powerful and selective Orco

agonists has important implications in the design of novel,

broadly effective insect control methods that utilize an

excito-repellent paradigm. Moreover, the availability of a

suite of Orco-specific reagents has facilitated studies that

have revealed several fundamental aspects of insect OR

structure–function that impact our understanding of the
www.sciencedirect.com
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Figure 2
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Evolution of chemosensory receptor gene families including lineage specific evolution of the insect Orco gene family and Pterygota-specific ORx

gene family.

Modified from [53��].
role of Orco and tuning ORs in mediating ORN signaling

[48�,49]. Other studies have revealed an additional level

of odor coding beyond odorant recognition wherein each

tuning OR contributes to the formation of a spectrum of

diverse OR ion channels each with unique ionotropic

characteristics; this suggests that odor coding exists in

peripheral ORNs which respond differentially depending

upon their OR/Orco complex [50]. Lastly, the functional

characterization of a subset of ORs that act in the chemi-

cal-based activation of insect sperm preceding fertiliza-

tion represents a new aspect in our appreciation of the

importance of ORs in insect life cycles and suggests even

more novel target sites for insect control methods by

disrupting important signaling pathways in the reproduc-

tive cycle of disease vectors or pests [51��].

The origin of the Or gene family in insects is presumably

the result of adaptations to terrestrial life [52] as well as

the emergence of winged insects adapting to the rapid

spread and evolution of vegetation [53��] (Figure 2). In

general, the molecular evolution of tuning Or gene

families reflects species-specific expansions and contrac-

tions resulting in highly divergent Or gene families with
www.sciencedirect.com 
no apparent orthologs across insect orders (Figure 2;

reviewed in [2]). Indeed, insect Or gene family repertoires

range from ten Or genes in lice (Phthiraptera) [54] to over

400 in ants (Hymenotptera) [55��]. The extensive gene

gain and loss are thought to be a consequence of adap-

tation of a species to a specific environmental condition

reflecting different biological needs in the life history of

each insect species [55��].

Gustatory receptors (GRs) predate the divergence of

crustacean and insects are generally denoted as taste or

contact receptors belonging to the same general super-

family as insect ORs (Figure 2, [56]). While there is a

relative paucity of information on GR specific ligands,

several D. melanogaster GRs have been directly linked to

sugar responses [57,58] as well as bitter tastants including

caffeine [59–61], and interestingly volatile CO2 [62]. In

the vector mosquitoes An. gambiae and Ae. aegypti, a trio of

highly conserved GRs co-expressed in a single non-ORN

neuron specific to the maxillary palp have also been

shown to collectively act as a CO2 chemoreceptor

[32,63] that plays an important role in host seeking

behaviors [64].
Current Opinion in Insect Science 2014, 6:86–92



90 Neuroscience
Ionotropic receptors
Ionotropic receptors (IRs), the most ancient family of

chemoreceptors (Figure 2) [65] that were first described

in D. melanogaster, are evolutionarily derived from iono-

tropic glutamate receptors (iGluRs) and accordingly are

thought to act as ligand gated ion channels [66]. In

Drosophila, IRs are expressed in coeloconic sensilla where

OR/Orco complexes are usually not present [67] and

which specifically respond to amines or acid-based odor-

ants that are largely ignored by ORs [30,68,69]. IR

positive neurons functionally express two to four Ir genes

representing a mix of odorant sensing IRs and generally

one or more co-receptor [69,70]. For example, in Droso-
phila Ir64a forms ligand-gated cation channels together

with the Ir8a co-receptor to drive responses to acids and

protons [71,72]. These studies support a model in which

IR-based signaling is required for odor coding of amines,

acids and other odorants that are not covered by ORs.

While understudied relative to ORs, highly conserved

families of IRs have been identified in the genomes of

many insect taxa [65] and one member has been func-

tionally characterized in An. gambiae [73].

Conclusions
In insects, sensory reception involves diverse and parallel

molecular components to process a nearly infinite spec-

trum of chemical information. While multiple, and not

necessarily incompatible, models persist as to the under-

lying mechanisms and precise functional roles of each

element in these diverse signal transduction paradigms,

there is general consensus around the idea that precise

and temporally restricted odor sensing is required for

many aspects of insect success and survival. Indeed,

the evolution of insects is, in part, a story of rapid

adaptations to various environments by continuously

upgrading OR repertoires to maximize overall fitness,

sometimes resulting in the establishment of so called

‘labeled lines’ for specialized pathways such as phero-

monal signaling. While the further elucidation of insect

signaling pathways will continue to inform our under-

standing of these evolutionary relationships, recent

advances revealing the unique aspects of the insect

olfactory system are likely to be utilized in the design

of novel approaches to manipulate salient behaviors of

economically and medically important insects.
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